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ABSTRACT

This contribution treats the estimation of reachable states for
time invariant hybrid systems. Using the framework provided
by Willems’ behavioural systems theory, we suggest a method
based on l-complete approximations, which can be realized by
finite state machines. The approximating behaviour is a super-
set of the original behaviour. Hence, the estimate of reachable
states based on an l-complete approximation can be shown to be
conservative, i. e. the exact set of reachable states is guaranteed
to be contained in the estimate. Because of this property our
method is adequate for verification tasks where the state vari-
able has to remain within a certain specification.
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INTRODUCTION

Within the scope of this paper, a hybrid state space is the prod-
uct of a finite set and an

�
vector space. The considered hybrid

systems are discrete time state systems with hybrid state space.
It is only under very restrictive assumptions that the set R of
states which are reachable within arbitrary time can be com-
puted exactly. In general, it is not even possible to explicitly
characterize the set of states which are reachable within one
time step. It is common practice to approximate the latter set,
and to repeatedly apply this one-step procedure (see [1] and [4]
for algorithms based on this idea). This results in an increas-
ing sequence of subsets of R. The procedure has found the
exact solution if and only if two successive sets turn out to be
equal. Unfortunately, the algorithm is not guaranteed to termi-
nate; hence the best result achieved within any finite time may
happen to be a number of strict subsets ofR. Clearly, this is not
adequate for verification purposes, where one needs to guaran-
tee that the state remains within a certain set Xspec. In the se-
quel, we propose a method based on l-complete approximations
that overcomes this problem: it provides a decreasing sequence
Rl of supersets of R. Rl ⊆ Xspec implies R ⊆ Xspec; hence,

the method is well suited for verification tasks.

In general, one obtains a discrete behaviour (i. e. a behaviour
with finite signal space) from a system with infinite state space
by introducing a suitable finite partition of the state space. For
hybrid state systems this can be done by projecting the hybrid
state space onto its discrete component. However, the resulting
discrete behaviour is no state space system anymore, raising the
question of a realization, preferable by a finite state machine. If
one succeeds in this task, the analysis of the hybrid state space
system can be done by standard methods from the field of finite
state machines. When the discrete behaviour turns out to be l-
complete, such a realization can be set up in a straightforward
manner. Of course, in general it cannot be expected that a finite
state machine can represent the discrete dynamics of a hybrid
system exactly, hence the discrete behaviour in general will not
be l-complete. Therefore, we propose an l-complete approx-
imation representing the discrete dynamics of the underlying
hybrid system to “some extent”. Our approximation scheme ex-
hibits two crucial properties: first, the approximating behaviour
is guaranteed to be a superset of the original behaviour. Second,
the method provides a sequence of approximations which is ex-
pected to improve and which is guaranteed not to deteriorate.
In fact l-complete approximations turn out to be convenient for
many purposes; e. g. see [6] for supervisory control based on
l-complete approximations.

This paper is organized as follows: in the Section “Hybrid sys-
tems”, we give a definition of hybrid state machines within the
“behavioural approach”. In the Section “l-Complete approx-
imations”, these are defined and realized by finite state ma-
chines. The main results are stated in the section “Estimates
of reachable states”. In the Section “Example”, the results are
applied to a thermal switched server system.

HYBRID SYSTEMS

The proposed approximation scheme relies on three basic defi-
nitions from Willems’ “behavioural approach”: dynamical sys-
tems, time invariance, and completeness. For the reader’s con-
venience, these definitions are collected here:

Definition 1. (See [10], Def. II.1) A dynamical system Σ is a
triple (T, W, � ) with T ⊆

�
the time axis, W the signal

space, and � ⊆ W T � {f | f : T → W} the behaviour. �

The behaviour is viewed as the set of all trajectories which are
compatible with the phenomena modelled by the system: trajec-
tories w 6∈ � cannot occur. In the sequel, we restrict ourselves
to discrete time systems with finite past, that is T = � 0. Let
σt denote the backwards t-shift, i.e. (σtf)(τ ) � f(t + τ ) for
all τ ∈ � 0, and σ � σ1. Then:

Definition 2. (See [10], Def. II.3) A dynamical system Σ =
( � 0, W, � ) is said to be time invariant if σ � ⊆ � . �

Implicitly, a system is uniquely determined by its behaviour;
we therefore refer to a behaviour as being time invariant, if it
belongs to a time invariant system. This convention is also used
with respect to all properties defined in the sequel.

Definition 3. (See [10], Def. II.4) Let l ∈ � . A time invariant
dynamical system Σ = ( � 0, W, � ) is said to be l-complete if

w ∈ � ⇔ σtw �� [0,l]
∈ ���� [0,l]

∀ t ∈ � 0 . (1)

�



Here, w|[t1,t2] denotes the restriction of the map w : � 0 →
W to the domain [t1, t2]. To keep notation reasonably com-
pact, we do not distinguish between w|[t1,t2] ∈ W [t1,t2] and
(w(t1), . . . w(t2)) ∈ W t2−t1+1. Note that shifting is de-
fined to be of higher priority than restricting: σtw|[0,l] =
(σtw)|[0,l] = w|[t,t+l].

The following definition provides a link between standard ter-
minology from the field of (finite) state machines and the be-
havioural approach.

Definition 4. Let the sets X and δ ⊆ X × X denote the
state space and the next state relation respectively. The pair
P = (X, δ) is called a state machine. If |X| ∈ � (X
counts only a finite number of elements), P is said to be a finite
state machine. The behaviour � s

� {x| (x(t), x(t + 1)) ∈
δ ∀ t ∈ � 0} is referred to as the induced state behaviour, and
Σs
� ( � 0, X, � s) as the induced state space system. Fur-

ther, let the set W and the map γ : X → W denote the exter-
nal signal space and the readout-map. respectively. The tuple
Pex = (X, W, δ, γ) is then called a state machine with exter-
nal signals. The external behaviour of Pex is defined to be the
image of � s under γ, that is: � ex

� γ � s
� {w| ∃x ∈ � s :

w(t) = γ(x(t)) ∀ t ∈ � 0}. Pex is said to be a realization of a
system Σ = ( � 0, W, � ) if � = � ex. �

The interpretation of the external behaviour and the readout-
map is slightly different from the typical behavioural point
of view: the state machines discussed in this paper are ei-
ther known by definition or constructed from known quanti-
ties. Hence the state variable itself is ‘external’ and therefore
not seen as ‘auxiliary’ or ‘latent’. Within this framework, the
readout-map serves only as an instrument to put the focus on
certain aspects of the state variable. It may even happen, that
the state covers aspects with input characteristics, hence the
readout-map may be defined to put the focus on inputs.

The state system Σs is said to be state trim if for all ξ ∈ X
there exist an x ∈ � s and a t ∈ � 0 such that x(t) = ξ; see
[10], page 270. Let P = (X, δ) be a state machine with in-
duced state system Σs. Then P is said to be trim whenever Σs

is trim. Since in our framework the initial state is not restricted
by P itself, state trimness is equivalent to P being temporally
nonblocking.

Henceforth, W is assumed to be a set holding a finite number
|W | ∈ � of elements, while X ⊆

� n × D, |D| ∈ � . This
implies that we focus on hybrid state systems with discrete ex-
ternal behaviour. Note that both the state behaviour � s and the
external behaviour � ex are time invariant. � s is 1-complete,
whereas � ex is not guaranteed to be l-complete for any l ∈ � .
As an example, take the widely discussed switched-server sys-
tems (see e. g. [2]), which do not exhibit a complete external
behaviour when the discrete portion of the state serves as exter-
nal signal.

l-COMPLETE APPROXIMATIONS

The construction of an l-complete superset � l of � ex as an ap-
proximation is done in terms of sets of states compatible with
certain finite strings of external signals.

Definition 5. Let Pex = (X, W, δ, γ) be a trim state machine
with induced state behaviour � s. By X (w̄|[0,l]) ⊆ X we de-
note the set of all states that are compatible with the sequence

of external signals w̄|[0,l] ∈ W l+1 at time l ∈ � 0:

X (w̄ �� [0,l]
) �

{ξ| ∃x ∈ � s : x(l) = ξ, γ x �� [0,l]
= w̄ �� [0,l]

} . (2)

�

The sets of compatible states can be obtained by a recursive
formula, given in the following proposition.

Proposition 1. For any trim state machine Pex =
(X, W, δ, γ) with induced state behaviour � s and any
trajectory w̄ ∈ W

�

0 , the following equations hold:

X (w̄ �� [0,0]
) = {ξ| ξ ∈ X, γ(ξ) = w̄(0)} = γ−1 w(0) , (3)

X (w̄ �� [0,l+1]
) =

{ξ| ∃ ξ− ∈ X (w̄ �� [0,l]
) : (ξ−, ξ) ∈ δ, γ(ξ) = w̄(l+1)} . (4)

Proof. It is obvious that any ξ in one of the left hand side sets in
(3) or (4) satisfies the conditions stated on the respective right
hand side. Hence the left hand side sets are subsets of those
right hand side. To show the converse, pick any ξ from the right
hand side set of equation (3). State trimness implies that there
exist trajectories x ∈ � s, x(0) = ξ. Hence ξ ∈ X (w̄|[0,0]),
implying equation (3). Now, pick any ξ from the right hand
side set in equation (4). As ξ− ∈ X (w̄|[0,l]), we know a
trajectory x− ∈ � s to exist such that γ x−|[0,l] = w̄|[0,l]

and x−(l) = ξ−. Again state trimness implies a trajectory
x+ ∈ � s, x+(0) = ξ, to exist. Now let x(t) � x−(t) for
all t ≤ l and x(t) � x+(t− l − 1) for all t > l. Observe that
x ∈ � s, x(l+1) = ξ and γ x|[0,l+1] = w̄|[0,l+1]. This implies
ξ ∈ X (w̄|[0,l+1]), hence Equation (4) has been shown. �

By equation (4), X (w̄|[0,l+1]) can be seen as the intersection of
the set of all states which are reachable from X (w̄|[0,l]) within
one time step and the inverse image of w̄(l) under γ. This op-
eration can be performed exactly for certain classes of hybrid
systems, e. g. linear hybrid automata. However, for more gen-
eral hybrid systems, it is hardly possible to explicitly character-
ize the set of states reachable in one time step. In these cases,
a common approach is to compute an approximation, where the
particular approximation technique depends on δ. In the fol-
lowing, this is formalized by a map E : 2X → 2X , where 2X

denotes the set of all subsets of X . Hence, E(X ′) represents
the approximation of the subset X ′ ⊆ X . In the sequel, E is
referred to as a monotone conservative approximation scheme
if X ′ ⊆ E(X ′) ⊆ E(X ′′) holds for all X ′ ⊆ X ′′ ⊆ X .

Definition 6. Let Pex = (X, W, δ, γ) denote a trim state ma-
chine with external signals. Let E : 2X → 2X be a conser-
vative monotone approximation scheme. Then, the estimate
E(w̄|[0,l]) ⊆ X of the set of states that are compatible with
w̄ ∈ W

�

0 at time l is defined by:

E(w̄ �� [0,0]
) � E(X (w̄ �� [0,0]

)) , (5)

E(w̄ �� [0,l+1]
) �

E({ξ| ∃ ξ− ∈ E(w̄ �� [0,l]
) : (ξ−, ξ) ∈ δ, γ(ξ) = w̄(l+1)}) (6)

�

Indeed E(w̄|[0,l]) turns out to be a conservative estimate of
X (w̄|[0,l]):

Proposition 2. In the above notation E(w̄|[0,l]) ⊇ X (w̄|[0,l])
holds for all l ∈ � 0 and all w̄ ∈ W

�

0 .



Proof. The prove is done by induction. The claim clearly holds
when l = 0. Now assume E(w̄|[0,l]) ⊇ X (w̄|[0,l]) to hold for
some fixed l ∈ � 0. From E being monotone and from equa-
tions (6) and (4) it follows E(w̄|[0,l+1]) ⊇ E(X (w̄|[0,l+1])),
hence E(w̄|[0,l+1]) ⊇ X (w̄|[0,l+1]). �

As an immediate consequence it can be observed that w̄|[0,l] ∈
� ex implies E(w̄|[0,l]) 6= ∅, where � ex is the external be-
haviour of the discussed state machine Pex:

Theorem 1. Let Pex = (X, W, δ, γ) denote a trim state ma-
chine with induced state behaviour � s and external behaviour
� ex. Let E : 2X → 2X be a conservative monotone approxi-
mation scheme, leading to estimates E( · ) of compatible states.
For l ∈ � 0 define

� l
� {w| E(w �� [t,t+l]

) 6= ∅ ∀ t ∈ � 0} . (7)

Then the following holds for all l ∈ � 0:

(i) � l is l-complete.

(ii) � l ⊇ � ex .

(iii) � l ⊇ � l+1 .

Proof. From equation (7), (i) follows immediately. To prove
(ii), choose any w ∈ � ex. Hence there exists an x ∈ � s such
that γ x = w and therefore X (w �� [t,t+l]

) 6= ∅ for all t ∈ � 0.
Now, Proposition 2 yields w ∈ � l. To prove (iii), choose any
w ∈ � l+1. Then, E(w �� [t,t+l+1]

) 6= ∅ holds for all t ∈ � 0.

This implies by Definition 6, equation (6), that E(w �� [t,t+l]
) 6= ∅

for all t ∈ � 0 and therefore w ∈ � l. �

The system Σl
� ( � 0, W, � l) is called an l-complete ap-

proximation of the system Σex
� ( � 0, W, � ex). If E is the

identity mapping (i. e. the sets of compatible states can be com-
puted exactly), the approximation � l is essentially equivalent to
the “discrete abstraction Al+1” defined in [7], to the “abstrac-
tion Al” in [8], or to the “condensed model of order l” in [5].
In this case the behaviour � l becomes the smallest l-complete
superset of � ex, and is therefore referred to as the strongest l-
complete approximation of Σex.

In order to construct a realization of Σl, we set up a suit-
able state space Zl and a next state relation δl. The proce-
dure is based on memorizing the last l + 1 external signals
(w(t − l), . . . w(t)) as state z(t) ∈ Z at time t ≥ l, simi-
lar to [9], section 2.4.9. Since our time axis is � 0 we need to
take into account the effect of shorter strings for t < l.

Zl
� �

1≤r≤l+1

W r . (8)

The next state relation is given by:

δl
� �

0≤r≤l

δr
l ⊆ Zl × Zl , (9)

where

δr
l
� {((w0, . . . wr), (w0, . . . wr+1))|

E(w0, . . . wr+1) 6= ∅} , 0 ≤ r < l,
(10)

δl
l
� {((w0, . . . wl), (w1, . . . wl+1))|

E(w1, . . . wl+1) 6= ∅} .
(11)

As external signal we select the very right entry of the state:

γl(z) � wr ∀ r ≤ l, z = (w0, . . . wr) ∈ W r . (12)

This defines a state machine with external signals

Pl
� (Zl, W, δl, γl) (13)

to be a realization of Σl:

Theorem 2. Let � ex denote an external behaviour of a trim
state machine. Let � l be an l-complete approximation of
Σex = ( � 0, W, � ex), as defined in Theorem 1, eq. (7). Then,
� l is realized by the finite state machine Pl

� (Zl, W, δl, γl),
defined by equations (8) – (13).

Proof. Let � s,l denote the state behaviour induced by Pl and
� ex,l the corresponding external behaviour. We need to show
� l = � ex,l. Choose an arbitrary but fixed w ∈ W

�

0 and let

z(t) ��� (w(0), . . . , w(t)) if 0 ≤ t < l,
(w(t− l), . . . , w(t)) if t ≥ l.

(14)

In order to prove w ∈ � ex,l ⇔ w ∈ � l we first assume
w ∈ � ex,l. Hence there must exist a z′ ∈ � s,l such that
γ z′ = w. From the definition of δl it follows by induction that
z(t) = z′(t) for all t ≥ l and therefore (z(t), z(t+1)) ∈ δl for
all t ≥ l. Furthermore, the definition of δl implies E(z(t)) 6=
∅ for all t ≥ l. By equation (14), w|[t−l,t] = z(t); hence
E(w|[t−l,t]) 6= ∅ for all t ≥ l and therefore w ∈ � l. We now
assume w ∈ � l. It is obvious that (z(t), z(t + 1)) ∈ δl for all
t ∈ � 0. Hence z ∈ � s,l and therefore w ∈ � ex,l. �

ESTIMATES OF REACHABLE STATES

The computation of the setR � R(Σs, X0) of states reachable
from a certain set of initial states X0 is a crucial point whenever
specifications are subject to verification: if the specifications
require that the system state remains within Xspec, one has to
figure out, whether R is a subset of Xspec.

Definition 7. Let Σs = ( � 0, X, � s) be a state space system.
A state ξ1 ∈ X is reachable from a state ξ0 ∈ X , if there exists
a trajectory x ∈ � s, such that x(0) = ξ0, x(t) = ξ1 for some
t ∈ � 0. ξ1 is reachable from the set of initial states X0 ⊆ X ,
if it is reachable from some state ξ0 ∈ X0. The set of all states
reachable from X0 is denoted by R(Σs, X0)

� {ξ1| ∃ ξ0 ∈
X0 : ξ1 is reachable from ξ0}. �

When state trimness is assumed, a state ξ1 is reachable from ξ0

if and only if there exists a finite sequence of transitions from δ
connecting ξ0 with ξ1. This corresponds to the standard defini-
tion of reachability within the state machine framework.

Since the realization Pl of an l-complete approximation � l is
a finite state machine, the set of states R(Σs,l, W0) reachable
from W0 ⊆ W ⊆ Zl can be computed by standard methods.
From the approximation property of � l one then obtains an es-
timate of reachable states for the original system Σs.

Theorem 3. Let Pex = (X, W, δ, γ) denote a trim state ma-
chine with induced state space system Σs = ( � 0, X, � s) and
external behaviour � ex. Let Pl = (Zl, W, δl, γl) denote the
realization of an l-complete approximation Σl = ( � 0, W, � l)
as derived in the previous section. For a given subset X0 ⊆ X
of initial states let W0

� γ X0 ⊆ W ⊆ Zl. Then the following
holds:

E(R(Σs,l, W0)) ⊇ R(Σs, X0) , (15)

γlR(Σs,l, W0) ⊇ γR(Σs, X0) . (16)



Proof. In order to show equation (15) choose any ξ1 ∈
R(Σs, X0). Then there exists a trajectory x ∈ � s, x(0) ∈
X0, x(t) = ξ1 for some t ∈ � 0. Let w � γx yield-
ing x ∈ � ex and therefore w ∈ � l. From the definition
of W0 observe w(0) ∈ W0. Let z be defined as in equa-
tion (14), implying z ∈ � s,l, γl z = w, z(0) = w(0) ∈ W0,
z(t) ∈ R(Σs,l, W0). Finally let r � min{l, t} and observe
z(t) = (w(t − r), . . . w(t)). From the definition of compat-
ible states ξ1 ∈ E(z(t)) holds, hence ξ1 ∈ E(R(Σs,l, W0)).
This completes the proof of equation (15). We now show equa-
tion (16). Choose any ω1 ∈ γ R(Σs, X0). Then there ex-
ists a trajectory x ∈ � s, x(0) ∈ X0 , γ x(t) = ω1 for some
t ∈ � 0. As above, let w � γx and z as in (14). Hence
z(t) ∈ R(Σs,l, W0). From γl z(t) = w(t) = γ x(t) = ω1,
equation (16) follows. �

From Theorem 1 the approximation � l of � ex is expected to
improve when l is increased. This result carries over to the esti-
mate E(R(Σs,l, W0)) of reachable states.

Theorem 4. Let E denote a conservative monotone approxima-
tion scheme and Pex a trim state machine with induced state
space system Σs. Further, let Σl, Σs,l, Pl denote l-complete
approximations of Σs based on E and realizations of those re-
spectively. Then

E(R(Σs,l, W0)) ⊇ E(R(Σs,l+1, W0)) (17)

holds for any subset W0 ⊆ W ⊆ Zl and any l ∈ � .

Proof. Choose an ξ1 ∈ E(R(Σs,l+1, W0)). Then there ex-
ists a trajectory z′ ∈ � s,l+1 such that z′(0) ∈ W0 and ξ1 ∈
E(z′(t)) for some t ∈ � 0. Let w � γl+1 z′. From the def-
inition of δl+1 in equations (9)–(11) and from z′ ∈ � s,l+1, it
follows that E(z′(τ )) 6= ∅ for all τ ∈ � 0. Define z : � 0 → Zl

as in equation (14). From z′(0) ∈ W (0) observe

z′(t) ��� (w(0), . . . , w(t)) if 0 ≤ t < l + 1,
(w(t− l − 1), . . . , w(t)) if t ≥ l + 1.

(18)

By equation (6) this implies E(z(τ )) 6= ∅ for all τ ∈ � 0,
hence z ∈ � s,l. Two cases are distinguished. First, if t ≤ l
then z(t) = z′(t) holds, hence ξ1 ∈ E(z(t)) and therefore
ξ1 ∈ E(R(Σs,l, W0)). Second, if t > l then z(t) = (w(t −
l), . . . , w(t)) . From E(w|[t−l,l]) ⊇ E(w|[t−l−1,l]) it again
follows that ξ1 ∈ E(R(Σs,l, W0). �

In other words: we can generate a conservative estimate
E(R(Σs,l, W0) for the unknown set R(Σs, X0) from the fi-
nite state machine Pl. If we replace Pl by Pm, m > l, the
estimate can be expected to improve, and is guaranteed not to
deteriorate.

EXAMPLE

We consider a hybrid switched-server system consisting of three
plates and a radiator, as described in [3]. The radiator can either
be switched off or on, heating a single plate depending on its
position. The switching strategy proposed in [3] is applied to
keep the temperatures of all plates in a specified range.

The following parameters are assumed to be known: the radi-
ator and the environment temperatures νr ∈

�
and νe ∈

�
respectively; the corresponding normalized heat transfer coeffi-
cients αr, αe ∈

� +; the specified range of allowed tempera-
tures [ν−, ν+] ⊂

�
; it is assumed that the initial temperatures

lie within (ν0, ν+) ⊂
�

. A temperature of a plate, v, is mod-
elled either by eq. (19) when it is heated or by eq. (20) when it
is not heated:

v̇ = αr (νr − v) + αe (νe − v) , (19)

v̇ = 2 αe (νe − v) . (20)

Observe v ≡ νm
� (αr νr + αe νe)/(αr + αe) to be

a stable equilibrium for a heated plate, and v ≡ νe for one
which is not heated. We assume parameter values such that
νe < ν− < ν0 < ν+ < νm holds.

Whenever a plate temperature equals either ν0 or ν+, an event
is generated. In response to such an event, a controller may
change the control input (i. e. change the radiator position,
switch the radiator on or off). In particular, our controller is
a Boolean switching table realizing the following rule base:

(i) Once the reheating process of a plate has been started, it
will be continued until the plate temperature reaches ν+,
but not any longer.

(ii) If at least one plate temperature is below ν0 and if no other
plate is being heated, the radiator is positioned at the plate
with the lowest temperature, starting a reheating process.

(iii) No reheating process will be started as long as all temper-
atures are above ν0

In order to obtain a discrete time axis, we consider the closed
system at those moments where the control input is changed. As
hybrid state variable we choose the pair (c, d) where: c ∈

� 3

represents the plate temperatures in ascending order; d = don

when the radiator is going to reheat the plate with the lowest
temperature; d = doff when the radiator is switched off. Note,
that by (i) and (iii) the plate temperatures are guaranteed not to
exceed ν+. This leads to the hybrid state space

X � {c| c ∈ � 3, νe ≤ c(1) ≤ c(2) ≤ c(3) ≤ ν+}

× {don , doff } . (21)

We define h(v1, v2) as an abbreviation for the following sce-
nario: a plate is reheated from temperature v2 up to ν+. Mean-
while some other plate will cool down from v1 to h(v1, v2).
Analogous we define g(v1, v2): while a plate cools down from
v2 to ν0, some other plate will cool down from v1 to g(v1, v2).
Solving the above ODEs it can be seen that

h(v1, v2) = νe + (v1 − νe)

�
νm − ν+

νm − v2 � 2 αe

αe+αr

, (22)

g(v1, v2) = νe + (v1 − νe)
ν0 − νe

v2 − νe

. (23)

The next state relation of the closed loop is then given by δ �
{((c, d), (c+, d+))| F (c, d) = (c+, d+)} where

F (c, doff ) � ((ν0, g(c(2), c(1)), g(c(3), c(1))), don) (24)

and, if h(c(2), c(1)) ≤ ν0,

F (c, don ) � ((h(c(2), c(1)), h(c(3), c(1)), ν+), don) (25)

or else

F (c, don ) � ((h(c(2), c(1)), h(c(3), c(1)), ν+), doff ) . (26)

As readout map we choose γ : X → W � {γid , γop} defined
by γ(c, d) � γid if c(1) > ν0, d = doff and γ(c, d) � γop

else. The hybrid states in X0
� γ−1(γid) are exactly those

where all temperatures are above ν0 and the radiator is switched
off.



We now define a monotone conservative approximation scheme
E. For this purpose, we introduce operators representing lower
bounds of subsets X ′ ⊂ X w. r. t. a given discrete component.
For any βoff , βon ∈

� 3 ∪ {∞}, X ′ ⊂ X let

boff (X ′) � inf{c| (c, doff ) ∈ X ′} ∈
� 3 ∪ {∞} , (27)

bon(X ′) � inf{c| (c, don) ∈ X ′} ∈
� 3 ∪ {∞} , (28)

A(βoff , βon ) � ({(c, doff )| c ≥ βoff } (29)

∪ {(c, don)| c ≥ βon}) ∩X ,

E(X ′) � A(boff (X ′), bon (X ′)) . (30)

Hence, the approximation E(X ′) is represented by the two vec-
tors boff (X ′) and bon(X ′), containing the lower bounds of the
continuous components for each of the two possible values of
the discrete component. In the above equations, the infimum
and the greater or equal relation are componentwise. Further-
more, the infimum of an empty set is considered as ∞.

As the estimate of states compatible with strings of external sig-
nals consisting of one single symbol only, we obtaine by Defi-
nition 6, eq. (5):

E(γid) = A((ν0, ν0, ν0), ∞) , (31)

E(γop) = A((νe, νe, νe), (νe, νe, νe)) = X . (32)

Let w̄ ∈ W
�

0 , l ∈ � , βoff
� boff (E(w̄|[0,l])) and βon

�
bon (E(w̄|[0,l])). Define β+

off and β+
on according to eq. (6):

(i) If w̄(l + 1) = γid :
Let β+

on
� ∞. If βon = ∞ then let β+

off
� ∞; else let

β+
off
� ( max(ν0, h(β(2)

on , β(1)
on )),

max(ν0, h(β(3)
on , β(1)

on )), ν+) . (33)

(ii) If w̄(l + 1) = γop :
Let β+

off
� ∞. If βoff = ∞ and h(β

(2)
on , β

(1)
on ) > ν0 then

let β+
on
� ∞; else let

β+
on
� ( min(ν0, h(β(2)

on , β(1)
on )),

min(g(β
(2)
off , β

(1)
off ), h(β(3)

on , β(1)
on )),

min(g(β
(3)
off , β

(1)
off ), ν+)) . (34)

Then E(w̄|[0,l+1]) = A(β+
off , β+

on ) holds, hence the estimates
of compatible states can be computed by the above formulas.
Starting at Z0 = {γid} the reachable statesR(Σs,l, Z0) can be
established by iteratively appending signals from W . If a string,
after appending, has length l+2 the leftmost signal is to be dis-
carded. Strings z ∈ Zl with boff (E(z)) = bon (E(z)) = ∞
are to be ignored when proceeding. In case this happens to all
newly generated strings the procedure terminates and all reach-
able states have been found. By Theorem 3, the minimum tem-
perature which can occur for an initial state in X0 is guaranteed
to be above the smallest first entry of the lower bounds bon ( · )
and boff ( · ) computed by the above procedure.

Numerical results are given in the table below, where the pa-
rameter values νe = 0.1, ν0 = 0.8, ν+ = 1.0, ν− = 0.5,
νr ∈ {2.0, 2.5, 3.0}, αe = 0.5, and αr = 1 are assumed.
Verification goes through positively for νr = 2.5 and νr = 3.0
at l = 6 and l = 5 respectively. In the case νr = 2.0 no
verification based on l-complete approximations for l ≤ 20 is
possible. However, when νr = 2.0, it can be seen from sim-
ulation that a plate temperature indeed is below the specified
minimum ν− = 0.5.

Guaranteed lower bounds on the plate temperatures
νr l ≤ 3 l = 4 l = 5 l = 6 l = 10 l = 20

2.0 0.10 0.27 0.29 0.31 0.32 0.32

2.5 0.10 0.40 0.44 0.50 0.56 0.56

3.0 0.10 0.49 0.55 0.63 0.63 0.63

CONCLUSIONS

We have proposed a general framework for computing reliable
estimates of sets of reachable states. The estimates are guar-
anteed to form a (not necessarily strictly) decreasing sequence
of supersets of the exact solution. While the sequence is not
guaranteed to converge to the true solution, we have the benefit
of the superset property; this allows us to perform verification
based on any set from the sequence generated by the proposed
method: if any of the sets Rl

� E(R(Σs,l, Z0)) is a subset of
the specification set Xspec, the state of the underlying hybrid
system is guaranteed to remain within Xspec. Note, that this
is not a contradiction to the semidecidability property stated
in [1], since it is possible that R(Σs, X0) ⊆ Xspec while
Rl 6⊆ Xspec for all l ∈ � .
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